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Motivation

Position auctions:

Billion dollar revenue stream for search engines
Auctions evolved in an ad hoc way
Auction theorists are catching up: starting to understand how
the auctions perform under simplifying assumptions.
Performance: putting good ads in good spaces, and generating
revenue
Which auction performs best?

Our contribution: computational method for comparing
auction performance quantitatively.
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Use of position auctions

GFP: Yahoo! and Overture 1997-2002

uGSP: Yahoo! 2002-2007

wGSP: Google, MSN Live, Yahoo! 2007-Present

Question

Is wGSP better than GFP and uGSP?

Better by what metric? Revenue, efficiency
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How theorists study position auctions

Terminology:

Nash equilibrium: every bidder is acting to maximize her own
payoff.
Perfect-information game: every bidder knows every other’s
value / CTR.
VCG: a perfectly economically-efficient auction (a common
theoretical benchmark)

They also need a structural model of values / CTRs...
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Edelman, Ostrovsky, Schwarz (2007)
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Varian (2007)
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Blumrosen, Hartline, Nong (2008)
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Benisch, Sadeh, Sandholm (2008)
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Action Graph Games [Bhat, Leyton-Brown, 2004]

Graphical model like Bayes nets, GAI nets or graphical games

Nodes are variables, directed edges denote conditional
independence
Representation is polynomial for graphs of bounded in-degree

Nodes represent actions: variable = how many play that
action?

Nodes can also be simple functions (e.g. sum, argmax)

Expected utility is polynomial in input [Jiang, Leyton-Brown,
2006]

Exponential speedup for solvers that use expected utility in
inner loop
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Representing GFP as AGG

n bidders, m bid increments (O(nm) actions)

For each action, payoff only depends on position

Sufficient statistic: How many bid the same? How many bid
higher? O(n2)

Easily computed with sum nodes

AGG representation O(n3m) (vs. O(nmn) in normal form)
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Representing GSP as AGG

Additional sufficient statistic: What is the next highest bid?
O(nm)

Easily computed with argmax nodes

AGG representation O(n4m2) (vs. O(nmn) in normal form)
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Problem instances

4 sizes (5-10 bidders, 5-40 increments)

4 preference distributions: EOS, V, BHN, BSS (assume
uniform distributions where unspecified)

100 draws from each distribution, size
= 1600 “preference instances”

3 auctions: GFP, uGSP, wGSP
= 4800 games
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Solving games

Remove dominated strategies: bids above an agent’s
(maximum) value, strategically redundant bids

Two solvers: simpdiv [Scarf, 1967] and gnm [Govindan, Wilson,
2005]

implemented in Gambit [McKevley et al, 2006] with AGG
dynamic programming optimizations [Jiang, Leyton-Brown,
2006]
Run solvers 10 times (with 5 minute cutoff).

Computation / Position Auctions David Robert Martin Thompson and Kevin Leyton-Brown



Position Auctions AGGs Experimental Setup Results Conclusion

Solving games

Remove dominated strategies: bids above an agent’s
(maximum) value, strategically redundant bids

Two solvers: simpdiv [Scarf, 1967] and gnm [Govindan, Wilson,
2005]

implemented in Gambit [McKevley et al, 2006] with AGG
dynamic programming optimizations [Jiang, Leyton-Brown,
2006]
Run solvers 10 times (with 5 minute cutoff).

Computation / Position Auctions David Robert Martin Thompson and Kevin Leyton-Brown



Position Auctions AGGs Experimental Setup Results Conclusion

Equilibrium selection

Problem: These games have many equilibria, and equilibrium
selection matters. (Enumerating equilibria is infeasible.)

We use local search to find (locally) extreme equilibria:
min/max revenue/efficiency (4 different objectives).

SLS algorithm: start from existing equilibria, random
improving moves, restart given local optimum.
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Statistical methods

Blocking, means-of-means, bootstrapping test (across a pair
of auctions)

Non-parametric confidence interval on mean difference

Significant if entire 1− α confidence interval ≥ 0

Used Bonferroni correction (divide by number of tests,
|T | = 80)

* denotes significant for α = 0.05/|T |
** denotes significant for α = 0.01/|T |
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Efficiency: (simplified) theoretical predictions

In EOS and V models, wGSP is efficient in every “envy-free”
Nash equilibrium [Edelman, et al., 2007; Varian, 2007].

There are cases in BHN and BSS models, wGSP is not
efficient in any Nash equilibrium [Blumrosen, et al., 2008;

Benisch, et al., 2008].
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Worst-case efficiency
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Revenue: (simplified) theoretical predictions

In EOS and V models, wGSP beats VCG in every “envy-free”
Nash equilibrium Edelman, et al., 2007; Varian, 2007].
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V: revenue range
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V: best-case revenue
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V: best-case revenue
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Conclusion

This approach is possible and yields real economic insights!

Efficiency: wGSP is more efficient (even in difficult models)
and very robust to equilibrium selection.

Revenue: Ranking is unclear. Equilibrium selection and
instance details have large impact.

Code and data are available at:
http://www.cs.ubc.ca/research/position_auctions/
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Future work

Learning distributions from data

Generalize representation to other models (e.g. with
externalities)

Better game solving techniques (e.g. provable bounds on
revenue and welfare)

Theoretical implications of results
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The Quest for assets

Our algorithm needs complete knowledge of advertisers’ CTRs
and values...

The Good: Lots of data on clicks and impressions

The Bad: No data on bids or weights

The Wanted: Data on conversions (or ideally, values)
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